Quadrature Formulas Based on the Scaling Function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Birkhoff Quadrature Formulas

In an earlier work the author has obtained new quadrature formulas (see (1.3)) based on function values and second derivatives on the zeros of nn(i) as defined by (1.2). The proof given earlier was quite long. The object of this paper is to provide a proof of this quadrature formula which is extremely simple and indeed does not even require the use of fundamental polynomials of (0,2) interpolat...

متن کامل

Positive trigonometric quadrature formulas and quadrature on the unit circle

We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...

متن کامل

Local quadrature formulas on the sphere

Let q ≥ 1 be an integer, Sq be the unit sphere embedded in Rq+1, and μq be the volume element of Sq. For x0 ∈ Sq, and α ∈ (0, π), let Sα(x0) denote the cap {ξ ∈ Sq : x0 · ξ ≥ cosα}. We prove that for any integer m ≥ 1, there exists a positive constant c = c(q,m), independent of α, with the following property. Given an arbitrary set C of points in Sα(x0), satisftying the mesh norm condition max ...

متن کامل

Anti-Gaussian quadrature formulas

An anti-Gaussian quadrature formula is an (n+ 1)-point formula of degree 2n− 1 which integrates polynomials of degree up to 2n+ 1 with an error equal in magnitude but of opposite sign to that of the n-point Gaussian formula. Its intended application is to estimate the error incurred in Gaussian integration by halving the difference between the results obtained from the two formulas. We show tha...

متن کامل

Stochastic Quadrature Formulas

A class of formulas for the numerical evaluation of multiple integrals is described, which combines features of the Monte-Carlo and the classical methods. For certain classes of functions—defined by smoothness conditions—these formulas provide the fastest possible rate of convergence to the integral. Asymptotic error estimates are derived, and a method is described for obtaining good a posterio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2005

ISSN: 0862-7940,1572-9109

DOI: 10.1007/s10492-005-0029-8